## Heterostructural Alloying - A Design Tool to Improve Functionality

## Scientific Achievement

Metastable (SnCa)Se with improved thermoelectric functionality was realized by combining theory-guided alloying with non-equilibrium growth.

## Significance and Impact

Alloying to target desired structures is emerging as a powerful materials design tool for applications requiring multiproperty optimization. In this case, a factor of 100 increase in the power factor, which depends on Seebeck coefficient and electrical resistivity, is achieved in going from orthorhombic SnSe to cubic $\mathrm{Sn}_{0.84} \mathrm{Ca}_{0.16} \mathrm{Se}$ (Fig. 2).

## Research Details

Theory: DFT/RPA accurately calculates alloy phase diagrams (Fig. 1).
Synthesis: $\mathrm{Sn}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{Se}$ films by pulsed laser deposition (PLD).
Characterization: Crystal structure by X-ray diffraction, decomposition microstructures by scanning transmission electron microscopy / energydispersive X-ray spectroscopy, transport measurements by Hall effect, Seebeck effect, electrical resistivity. Optical absorption determines bandgap and thickness.

Matthews et al., J. Mater. Chem. A 5, 16873 (2017).


Fig. 1: Predicted phase diagram. Isotropic rock-salt (RS) structure desired.


Fig. 2: Measured transport properties of PLD-grown (SnCa)Se thin films.

