Design of Metastable Tin Titanium Nitride Semiconductor Alloys

Scientific Achievement

We predicted and synthesized new mixed-metal nitride alloys with improved optoelectronic properties. Specifically, we synthesized metastable $(Sn,Ti)_3N_4$ spinels using non-equilibrium synthesis [1]. These $(Sn,Ti)_3N_4$ alloys have lower hole effectives masses and better transport than Sn_3N_4 [2].

Significance and Impact

We demonstrated that theory-guided materials design in the space of metastable alloy materials coupled with thin-film synthesis techniques can yield real-world materials with improved properties for energy-conversion applications, including photoelectrical hydrogen production.

Research Details

Theoretical results (Fig. 1):

- Hole effective mass decreases with Ti, becomes low ($<3m_0$) at 20% Ti
- Electron mass low $(0.3m_0)$ for all studied Ti compositions
- Band gap favorable for optoelectronics (1–2 eV) for up to 30%–35% Ti
- Alloys challenging to synthesize (Δh_{mix} = 0.4 eV/at, $\Delta \mu_N$ = +1 eV)

Experimental results (Fig. 2):

- Spinel alloy films synthesized at 280°C with up to 50%–60% Ti
- Band gap first increases to 2 eV, then decreases with increasing $\ensuremath{\mathsf{Ti}}$
- Doping stays moderate (10^{17}-10^{18} \ cm^{-3}) up to 40%–50% Ti
- PEC photocurrent increases by 5x with addition of Ti

[1] A. Bikowski, A. Zakutayev, et al., *Chem. Mater.* 29, 6511 (2017).
[2] C.M. Caskey, A. Zakutayev, et al., *J. Mater. Chem. C* 3, 1389 (2015).

Fig. 1. Predicted properties

Experiment:

MINES