Physical Descriptor for the Gibbs Energy of Inorganic Crystalline Solids and Temperature-Dependent Materials Chemistry

Scientific Achievement: Developed a machinelearned descriptor enabling the chemically accurate high-throughput prediction of temperaturedependent thermodynamics (<40 meV/at MAE).

Significance and Impact: Provides the first comprehensive look at materials stability and synthesizability across the known inorganic crystalline compounds.

- Establishes the temperature-dependent scale of metastability.
- Identifies chemical design rules and compositions for realizing new, and likely synthesizable, highly metastable materials.

Research Details: Use the SISSO approach to identify an accurate, fast descriptor for G(T). Apply this descriptor to generate and analyze **millions** of *T*-*x* **phase diagrams** (up to1,800 K) for more than **20,000 compounds** curated from the ICSD.

Office of

Science

High-throughput prediction of $G_{rxn}(T)$ and reaction equilibria 100 SnSe Sn + Se 0.5 □-□ pred 6.0 fraction (kJ/mol) -100 Zn Mo₂N 0.2 MoO2 002−200 90 -300 NH: exp --- pred -400 $Cr_2O_3 + 2NH_3$ 2CrN 0.0 300 6Ó0 9Ó0 1200 1500 3Ò0 6Ó0 900 1200 1500 1800 Temperature (K) Temperature (K)

Stability and metastability of inorganic compounds

C. Bartel, S. Millican, A. Deml, J. Rumptz, W. Tumas, A. Weimer, S. Lany, V. Stevanović, C. Musgrave, A. Holder, *Nature Communications* 9, 4168 (2018).

UNIVERSITY

BROOKHAVEN

