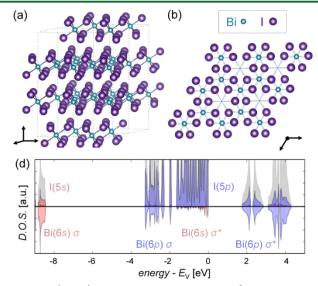
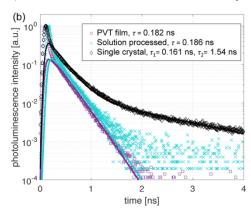
## Bismuth Triiodide (Bil<sub>3</sub>) – A Candidate Photovoltaic Absorber

## Scientific Achievement

We identified Bil<sub>3</sub> as a candidate photovoltaic absorber using computational design criteria based on the methyl ammonium lead iodide perovskites. Initial experiments demonstrate room-temperature photoluminescence with application-relevant lifetimes.


## Significance and Impact

New materials are needed for high-performance, low-toxicity, Earth-abundant photovoltaic absorbers. We employed Materials-by-Design methods to first predict and then experimentally verify the promise of Bil<sub>3</sub>.


## **Research Details**

- Computed electronic structure via first principles (Fig. 1b).
- Physical vapor transport and spin-coating of thin films.
  Bridgman-style growth of single crystals.
- Measured optical absorption and photoluminescence.
- Measured carrier recombination time constant using timeresolved photoluminescence (Fig. 2).
- Carrier lifetimes ~180 ps in thin films and ~1.5 ns in single crystals.

R.E. Brandt et al., J. Phys. Chem. Lett. 6, 4297 (2015).



**Fig. 1:** (top) Crystal structure of Bil<sub>3</sub>. (bottom) Calculated electronic density of states.



**Fig. 2:** Measurements of carrier lifetime by Time-resolved photoluminescence.



















