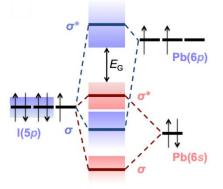
Identifying Defect-Tolerant, High-Lifetime Semiconductors

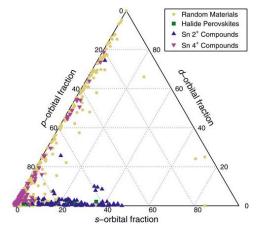

HARVARD

Scientific Achievement

The key role that band-edge orbital character has on defect tolerance (gained from MAPbX₃ perovskites) underlies a new joint data-mining and theory approach to screen materials for long minority-carrier lifetimes, which is a critical photovoltaic (PV) absorber property.

Significance and Impact

We have identified inorganic PV absorber materials with potential MAPbX₃-like performance but improved stability.


Fig. 1. Orbital character of band edges in $MAPbl_3$.

Research Details

- Screening Criteria: Key material parameters that distinguish MAPbX₃ are antibonding orbital character of both the conduction and valence band extrema (Fig. 1), small effective masses, and large static dielectric constant.
- Screening Tools: Using these "defining parameters," 27,000 inorganic semiconducting materials from the Materials Project were evaluated and a few dozen identified as promising (Fig. 2).
- Next Steps: Investigate electronic structure of potential novel PV absorbers and synthesize promising candidates.

R. Brandt, V. Stevanovic, D. Ginley, T. Buonassisi, MRS Comm., DOI:10.1557/mrc.2015.26 (2015).

Fig. 2. Orbital type at valence band maximum.

