Structure Property Relationships in Wide-Gap Gallium Oxide Thin Films

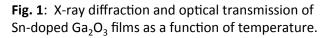
HARVARD

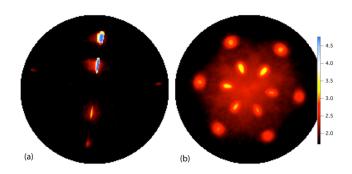
Scientific Achievement

Successfully determined the synthesis space (substrate temperature, oxygen partial pressure, substrate selection) for the targeted growth of β -Ga₂O₃ thin films through theory-guided experiments. Grew high-quality, oriented β -Ga₂O₃ films.

Significance and Impact

Gallium oxide is of current interest as a wide-bandgap semiconductor for power electronics. Identifying the processing conditions necessary for high-quality film synthesis is a critical step toward developing this technology.


Research Details


Film Synthesis: Temperature-gradient combinatorial pulsed laser deposition was used to broadly map the synthesis space. Additional uniform samples were grown for detailed structural studies.

Structural Properties: The films crystallized into β -Ga₂O₃ above 250 °C, with the onset of exclusive 201 textured orientation at 450 °C. Epitaxial growth was achieved on Ga₂O₃, but twinned domains were observed for films on 0001 sapphire.

Optical and Electronic Properties: Substrate temperature and pO_2 had a large effect on electrical conductivity and visible transmission.

X-ray Diffraction 50 20(degrees) 40 arb.u -201 600 30 20 **Optical Transmission** 1.0 -0.8 -0.6 250 °C 550 °C Temperature

Fig. 2 (002) XRD pole figure of a 2% Sn: Ga_2O_3 films: a) Epitaxial growth on Ga_2O_3 single crystal; b) Biaxially textured growth on sapphire single crystal.

L.M. Garten et al., MRS Comm., 2016 https://doi.org/10.1557/mrc.2016.50

