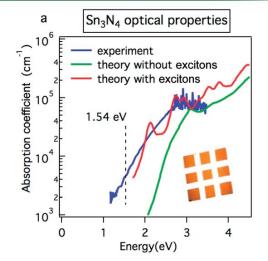
Semiconducting Metastable Sn₃N₄ and IV₃N₄ Polymorphs

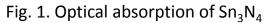
HARVARD S

Scientific Achievement

Thin films of the metastable spinel γ -Sn₃N₄ were synthesized by sputtering and characterized for semiconducting properties, such as absorption spectra, electrical transport, ionization potential, and minority-carrier diffusion length.

Significance and Impact


Experiments indicate that Sn_3N_4 would be promising for PEC water oxidation, either by reducing its hole effective mass by alloying with Si/Ge or by stabilizing the α - or β -polymorphs, as suggested by first-principles theoretical calculations.


Research Details

- **Synthesis**: Thin films of metastable γ -Sn₃N₄ (+1.56 eV/f.u.) were synthesized by reactive sputtering with atomic nitrogen.
- **Optical:** The measured optical gap of γ-Sn₃N₄ is 1.6 eV, in good agreement with 1.5 eV theoretical calculations (Fig. 1).
- **Electronic**: The γ-Sn₃N₄ ionization potential is 6.0–6.5 eV, suitable for water oxidation applications (*n*-type, 10^{18} cm⁻³).
- **Theory**: Hole effective mass of γ-Sn₃N₄ ($13m_e$) can be decreased by alloying with Si/Ge, and stabilizing α- or β-polymorphs (Fig. 2).

Office of

Science

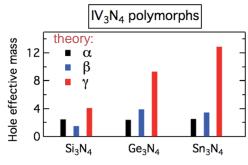


Fig. 2. Hole effective masses of IV_3N_4 polymorphs

C.M. Caskey, A. Zakutayev, et al., J. Mater. Chem. C **3**, 1389 (2015).

