Scientific Achievement

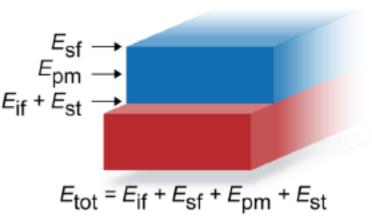
Developed a computational framework combining calculations of formation energy, elastic strain energy and topological lattice matching to guide substrate selection for epitaxial materials growth.

Significance and Impact

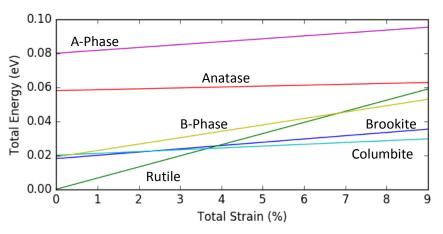
This approach to substrate selection facilitates the targeted synthesis of functional materials, including metastable polymorphs and new materials.

Research Details

- **Pathways to synthesis:** Elastic energy and topologically matching area are a first-order guide to synthesizability of a material on a substrate.
- **Metastable exploration:** Use substrate selection as a means for stabilizing of metastable polymorphs.
- **VO₂ polymorph synthesis:** Using the method, substrates were determined for the synthesis of VO₂ polymorphs brookite, columbite, and anatase.
- Integration into Materials Project: Soon available as part of Pymatgen and on the Materials Project website.


Berkele

H. Ding *et al.*, ACS Appl. Mater. Interfaces, 2016 DOI: 10.1021/acsami.6b01630


Office of

Science

Fig. 1: Predictive model for epitaxy based on total energy

Fig. 2: Total energy of VO₂ polymorphs as a function of strain on (110)-YAIO₃

HARVARD