A Framework for Automating Point-Defect Calculations

Scientific Achievement
Completed and rigorously validated open-source Python framework to automate first-principles point-defect calculations.

Significance and Impact
The automated defect calculations enable large-scale predictions of materials' defect properties. Therefore, this framework provides a key tool for including defect properties into theory-guided Materials-by-Design approaches to materials development.

Research Details
- Framework provides an effective and efficient method to identify candidate interstitial structures (in addition to other point defects).
- Applies correction schemes—(a) potential alignment, (b) image-charge correction, and (c) band-filling correction to shallow defects—to rectify finite-size artifacts within the supercell approach.
- Validated by predicting point defects’ formation energies and charge transition levels for representative materials (Si, ZnO, In$_2$O$_3$).

Figure 1: Overview of the automated workflow to perform point-defect calculations.

https://github.com/pylada/pylada-defects